Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy.
نویسندگان
چکیده
BACKGROUND Dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder that typically exhibits autosomal dominant inheritance. Genomic strategies enable discovery of novel, unsuspected molecular underpinnings of familial DCM. We performed genome-wide mapping and exome sequencing in a unique family wherein DCM segregated as an autosomal recessive (AR) trait. METHODS AND RESULTS Echocardiography in 17 adult descendants of first cousins revealed DCM in 2 female siblings and idiopathic left ventricular enlargement in their brother. Genotyping and linkage analysis mapped an AR DCM locus to chromosome arm 7q21, which was validated and refined by high-density homozygosity mapping. Exome sequencing of the affected sisters was then used as a complementary strategy for mutation discovery. An iterative bioinformatics process was used to filter >40,000 genetic variants, revealing a single shared homozygous missense mutation localized to the 7q21 critical region. The mutation, absent in HapMap, 1000 Genomes, and 474 ethnically matched controls, altered a conserved residue of GATAD1, encoding GATA zinc finger domain-containing protein 1. Thirteen relatives were heterozygous mutation carriers with no evidence of myocardial disease, even at advanced ages. Immunohistochemistry demonstrated nuclear localization of GATAD1 in left ventricular myocytes, yet subcellular expression and nuclear morphology were aberrant in the proband. CONCLUSIONS Linkage analysis and exome sequencing were used as synergistic genomic strategies to identify GATAD1 as a gene for AR DCM. GATAD1 binds to a histone modification site that regulates gene expression. Consistent with murine DCM caused by genetic disruption of histone deacetylases, the data implicate an inherited basis for epigenetic dysregulation in human heart failure.
منابع مشابه
Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss
Objectives: Hearing loss (HL) is the most common sensory disorder, and affects 1 in 1000 newborns. About 50% of HL is due to genetics and 70% of them are non-syndromic with a recessive pattern of inheritance. Up to now, more than 50 genes have been detected which are responsible for autosomal recessive non-syndromic hearing loss, (ARNSHL). In Iran, HL is one of the most common disabilitie...
متن کاملModeling GATAD1-Associated Dilated Cardiomyopathy in Adult Zebrafish
Animal models have played a critical role in validating human dilated cardiomyopathy (DCM) genes, particularly those that implicate novel mechanisms for heart failure. However, the disease phenotype may be delayed due to age-dependent penetrance. For this reason, we generated an adult zebrafish model, which is a simpler vertebrate model with higher throughput than rodents. Specifically, we stud...
متن کاملWhole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient
Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a gener...
متن کاملA mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder
BACKGROUND To elucidate the genetic basis of a novel neurodegenerative disorder in an Old Order Amish pedigree by combining homozygosity mapping with exome sequencing. METHODS AND RESULTS We identified four individuals with an autosomal recessive condition affecting the central nervous system (CNS). Neuroimaging studies identified progressive global CNS tissue loss presenting early in life, a...
متن کاملExome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13.
Exome sequencing is a powerful tool for discovery of the Mendelian disease genes. Previously, we reported a novel locus for autosomal recessive non-syndromic mental retardation (NSMR) in a consanguineous family [Nolan, D.K., Chen, P., Das, S., Ober, C. and Waggoner, D. (2008) Fine mapping of a locus for nonsyndromic mental retardation on chromosome 19p13. Am. J. Med. Genet. A, 146A, 1414-1422]....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2011